TVB boundary treatment for numerical solutions of conservation laws
نویسندگان
چکیده
منابع مشابه
Linear high-resolution schemes for hyperbolic conservation laws: TVB numerical evidence
The Osher-Chakrabarthy family of linear flux-modification schemes is considered. Improved lower bounds on the compression factors are provided, which suggest the viability of using the unlimited version. The LLF flux formula is combined with these schemes in order to obtain compact finite-difference algorithms. The resulting schemes are applied to a battery of numerical tests, going from advect...
متن کاملBoundary Layers in Weak Solutions to Hyperbolic Conservation Laws
This paper studies the boundary layers that generally arise in approximations of the entropy discontinuous solutions to the initial-boundary value problem associated with a nonlinear hyperbolic system of conservation laws. We consider the vanishing viscosity method and several nite di erence schemes (Lax-Friedrichs type schemes, Godunov scheme). Assuming solely uniform L1 bounds and for entropy...
متن کاملFundamental Solutions of Conservation Laws
In this paper we construct fundamental solutions of a scalar conservation law in one space dimension. These source-type solutions are well known for a convex case and hence our focus is on a general non-convex case which may have a finite number of inflection points. Signed fundamental solutions are constructed first and then under an extra hypothesis on nonnegativity of the flux two parameter ...
متن کاملOn local conservation of numerical methods for conservation laws
Abstract. In this paper we introduce a definition of the local conservation property for numerical methods solving time dependent conservation laws, which generalizes the classical local conservation definition. The motivation of our definition is the Lax-Wendroff theorem, and thus we prove it for locally conservative numerical schemes per our definition in one and two space dimensions. Several...
متن کاملA numerical method for fractal conservation laws
We consider a fractal scalar conservation law, that is to say, a conservation law modified by a fractional power of the Laplace operator, and we propose a numerical method to approximate its solutions. We make a theoretical study of the method, proving in the case of an initial data belonging to L∞ ∩ BV that the approximate solutions converge in L∞ weak-∗ and in Lp strong for p < ∞, and we give...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1987
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1987-0890257-7